隨著人工智能技術的發展,為了滿足制造業生產柔性化、制造自動化的發展需求,數控機床的智能化程度在不斷提高。具體體現在以下幾個方面:
(1)加工過程自適應控制技術:通過監測加工過程中的切削力、主軸和進給電機的功率、電流、電壓等信息,利用傳統的或現代的算法進行識別,以辯識出刀具的受力、磨損、破損狀態及機床加工的穩定性狀態,并根據這些狀態實時調整加工參數(主軸轉速、進給速度)和加工指令,使設備處于最佳運行狀態,以提高加工精度、降低加工表面粗糙度并提高設備運行的安全性;
(2)加工參數的智能優化與選擇:將工藝專家或技師的經驗、零件加工的一般與特殊規律,用現代智能方法,構造基于專家系統或基于模型的“加工參數的智能優化與選擇器”,利用它獲得優化的加工參數,從而達到提高編程效率和加工工藝水平、縮短生產準備時間的目的;
(3)智能故障自診斷與自修復技術:根據已有的故障信息,應用現代智能方法實現故障的快速準確定位;
(4)智能故障回放和故障仿真技術:能夠完整記錄系統的各種信息,對數控機床發生的各種錯誤和事故進行回放和仿真,用以確定錯誤引起的原因,找出解決問題的辦法,積累生產經驗;
(5)智能化交流伺服驅動裝置:能自動識別負載,并自動調整參數的智能化伺服系統,包括智能主軸交流驅動裝置和智能化進給伺服裝置。這種驅動裝置能自動識別電機及負載的轉動慣量,并自動對控制系統參數進行優化和調整,使驅動系統獲得最佳運行;
(6)智能4M數控系統:在制造過程中,加工、檢測一體化是實現快速制造、快速檢測和快速響應的有效途徑,將測量(Measurement)、建模(Modelling)、加工(Manufacturing)、機器操作(Manipulator)四者(即4M)融合在一個系統中,實現信息共享,促進測量、建模、加工、裝夾、操作的一體化。
5.體系開放化
(1)向未來技術開放:由于軟硬件接口都遵循公認的標準協議,只需少量的重新設計和調整,新一代的通用軟硬件資源就可能被現有系統所采納、吸收和兼容,這就意味著系統的開發費用將大大降低而系統性能與可靠性將不斷改善并處于長生命周期;
(2)向用戶特殊要求開放:更新產品、擴充功能、提供硬軟件產品的各種組合以滿足特殊應用要求;
(3)數控標準的建立:國際上正在研究和制定一種新的CNC系統標準ISO14649(STEP-NC),以提供一種不依賴于具體系統的中性機制,能夠描述產品整個生命周期內的統一數據模型,從而實現整個制造過程乃至各個工業領域產品信息的標準化。標準化的編程語言,既方便用戶使用,又降低了和操作效率直接有關的勞動消耗。